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Abstract

Alchourrón devoted his last years to the analysis of the notion of defeasible condition-
alization. He developed a formal system capturing the essentials of this notion. His def-
inition of the defeasible conditional is given in terms of strict implication operator and
a modal operator f which is interpreted as a revision function at the language level.
In this paper, we will point out that this underlying revision function is more gener-
al than the well known AGM revision [4]. In addition, we will give a complete charac-
terization of that more general kind of revision and will show how permits to unify
models of revision given by other authors. 
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Resumen

Alchourrón dedicó sus últimos años al análisis de la noción de condicionalización derro-
table. Desarrolló un sistema formal que captura los aspectos esenciales de esta noción.
Su definición de condicional revisable está dada en términos del operador de implica-
ción estricta y un operador modal f el cual es interpretado en el nivel del lenguaje como
una función de revisión. En este trabajo señalamos que la función de revisión subya-
cente es más general que la bien conocida función de revisión de AGM. Además, pre-
sentaremos una caracterización completa de una clase de revisión más general y
mostraremos cómo nuestro modelo permite unificar los modelos de revisión propues-
tos por otros autores.

PALABRAS CLAVE: condicional derrotable - implicación estricta - función de revisión.

1. Introduction

In the last years of his life, Carlos Alchourrón published a series
of articles on the logic of defeasible conditionals [1,2,3]. In these papers
Alchourrón not only provided a philosophical elucidation of the notion of
defeasibility but also showed how to apply it in the explication of deon-
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tic concepts such as the notion of prima facie duty. The Alchourrón’s main
contribution to the theory of defeasible conditional has been to marry the
concepts of revision and defeasible conditional in his modal system DFT
using a revision function at the language level. Thus, he arrived at the
new semantic for defeaseble conditional in terms of revision. 

His main theses on this subject can be summarized as follows: a)
the conditional constructions of ordinary language are often used in such
a way that the antecedent α together with a set of assumptions accept-
ed in the context of utterance of the conditional, but not by itself, is a suf-
ficient condition for the consequent β; b) this kind of conditional is
defeasible and can be represented by fα ⇒ β, where ⇒ is the strict con-
ditional and fα is used to symbolise the joint assertion of α and the set
of assumptions that comes with it; c) the operator f is a special AGM revi-
sion function (see [4]). In addition, he assumes a choice function Ch mir-
rors at the semantic level the operator f, i.e. for each sentence α it selects
the worlds in which α and its associated assumptions are true. 

In his “Philosophical Foundations of Deontic Logic and the Logic
of Defeasible Conditionals” [1], Alchourrón dedicated a section to the rela-
tion between defeasible conditionals and the AGM functions of theory
change. In the section memorably titled “Fusion and Possible Confusion
of Logic and Revision”, Alchourrón proposed many perspectives to under-
stand defeasible conditionals but here we only consider the characteri-
sation of the Choice connective f as a revision operator. Just as it has been
pointed out in [8], this interpretation is not entirely immediate. In the
formal presentation, f is a function of a single propositional argument,
say α, and returns another proposition, the conjunction of α and its pre-
suppositions. However, according to AGM paradigm, revision functions
possess two arguments: the theory K to be revised and the input sentence
α, and return a theory K*α. As far as Alchourrón’s formalisation goes, he
gives no counterpart for the implicit theory K.

In the current work, based on the association of fα with K*α, we
give an identification of the axioms of f and the postulates of revision
which make no explicit reference to any theory K. In addition, we give a
characterisation of the family of revision functions for an implicit under-
lying theory K, that do not necessarily verify postulates inclusion and
vacuity. These postulates describe the case of revision by consistent infor-
mation and play a crucial role in the case of conditional theories. We shall
dedicate a special passage to this controversial topic below. 

Our interpretation is in intimate relation to the work of Gärden-
fors and Makinson [11,12], who showed the connection between a non-
monotonic consequence relation and the logic of theory change. Both the
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non-monotonic consequence relation and Alchourrón’s conditional logic
were explained in terms of a special revision function that satisfies all the
AGM revision postulates but not inclusion and vacuity. They also share
the necessary assumption of an implicit theory K, which is of an existen-
tial nature. It can be proved that the properties of the non monotonic con-
sequence relation are in correspondence with those of Alchourrón’s
conditional connective (with the proviso that the one is extralinguistic
while the other is not).

So far we have commented on Alchourrón’s foundational ideas. A
first analysis of his ideas has been made in [8] by us. In the following pas-
sages we will continue reviewing some aspect of the theory of defeasible
conditionals and will dare to give a novel interpretation of the revision
function behind Alchourrón’s conditionals. 

His logic can be considered as an special conditional logic that pro-
vide a calculus for a particular class of Belief Functions. In this paper we
are specially interested in the formal counterparts of this intuitive notions
in terms of the logic of theory change. 

The class of revision functions that we consider here are more gen-
eral than the ones proposed in [4]. One of their representations will be
based on sphere systems [14]. A sphere system is a total order among
worlds (not necessarily well founded) where the worlds that belong to the
same layer are indistinguishable from each other. Besides, each sphere
represents a possible theory as the set of formulas that are satisfied by
every world that belongs to this sphere. In our approach, we consider a
sphere system and one distinguished sphere as representing our prefer-
ences and our beliefs. In this context, we have two ways of changing our
beliefs: internal or external. If in order to our beliefs we cannot affirm nei-
ther the truth of a sentence β nor its negation ¬β, and we have the neces-
sity for assuming the one or the other, then we have to use our internal
preferences. In order to do that, we borrow from Pagnucco [17] the con-
cept of abductive expansion and the nonmonotonic consequence associ-
ated to it. On the contrary, if we believe β but we have to do a
counterfactual reasoning assuming that ¬β is possible and we want to con-
clude if another sentence γ or its negation ¬γ is true, then we use the usu-
al notion of nonmonotonic reasoning such as it appears in [12]. 

In this paper we show how our more general model of revision per-
mits to unify internal and external revision in a unique one. 

Throughout our presentation, we will assume some familiarity with
classical logic and with AGM theory. In Section 2 we will introduce nota-
tional conventions and review the definitions and main results of both DFT
logic and theory change that will be needed. In Section 3 we will formal-
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ly present the main results in this paper. In Section 4 we will give some
final comment and will mention some lines of further research. Finally,
in the appendix we will present the proofs of lemmas and theorems. 

2. Background

2.1. The Logic DFT 1

Alchourrón’s modal conditional logic is based on a propositional lan-
guage L augmented with an S5-necessity operator � and a revision oper-
ator f, which is in fact another modality. We will refer to this modal language
with LDFT. Alchourrón based his construction on the idea that in a defea-
sible conditional the antecedent is a contributory condition (i.e. a necessary
condition of a sufficient condition) of its consequent. Hence, he defined a
defeasible conditional α > β meaning that the antecedent α jointly with the
set of assumptions that comes with it is a sufficient condition for the con-
sequent β. In order to represent in the object language the joint assertion
of the proposition expressed by a sentence α and the set of assumptions that
comes with it, he used a revision operator f. For example, if α1 …αn are the
assumptions associated with α, then fα stands for the joint assertion (con-
junction) of α with all the αi (for all 1 ≤ i ≤ n), where α is always one of the
conjuncts of fα. Although Alchourrón did not explicitly refer to the cardi-
nality of the set of assumptions for a given proposition, this set may well
be infinite and fα stands for a nominal of the infinite conjunction. 

For reasons that we will see later, he does not allow for the occur-
rence of an operator f within the scope of another operator f, i.e. his lan-
guage is flat with respect to this kind of operators. Since LDFT is the
standard modal language of S5 augmented with f, the S5-possibility oper-
ator ◊ and the strict conditional ⇒ are defined in terms of � as usual: 

◊α ≡df ¬�¬α and α ⇒ β ≡df � (α → β )

Definition 1. [2] The conditional logic DFT is the smallest set S
⊆ LDFT such that S contains classical propositional logic and the follow-
ing axiom schemata, and is closed under the following rules of inference: 

K �(α → β) →(�α → �β).
T �α → α .
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4 �α → � � α .
5 α → �◊α .
f.1 (f α → α ). (Expansion) 
f.2 (α ≡ β) → (f α ≡ fB). (Extensionality) 
f.3 ◊ α → ◊ f α. (Limit Expansion) 
f.4 (f(α ∨ β) ↔fα ) ∨ (f(α ∨ β) ↔f β) ∨ (f(α ∨ β) ↔(fα ∨ fβ))

(Hierarchical Ordering) 
Nes From α infer � α .
MP From α → β and α infer β.

Axioms K, T, 4 and 5 define to S5, and f.1-f.4 are constraints
imposed on the revision operator f. Condition f.1 is in fact the character-
istic axiom T of standard modal systems. As an axiom constraining f it
is quite natural since it states that fα, stands for the conjunction of α and
its presuppositions implies one of the conjuncts: α. f.2 asserts that equiv-
alent sentences have equivalent presuppositions. f.3 links the two modal-
ities. It ensures the existence of consistent presuppositions for any
sentence that is not a contradiction. f.4 asserts that the presuppositions
of a disjunction are either the presuppositions of one of the disjuncts, or
else the disjunction of the presuppositions of each of the disjuncts. In a
forward reading it implies that f is a normal modality, in the sense that
it satisfies the characteristic axiom K (notice that �DFT f(¬ α ) → ¬(fα )). 

Alchourrón gave a formal semantic interpretation of the language
LDFT based on standard non-relational S5-models. 

Definition 2. A model for LDFT is MDFT = �W,Ch,[ ]� where W is a non
empty set, the valuation function [ ] maps Var (the set of propositional va-
riables) into P(W), and Ch: L → P(W) is a selection function such that for
each sentence α, β of LDFT

Ch.1 Ch(α ) ⊆ [α ].
Ch.2 If [α] = [β] then Ch(α )=Ch(β).
Ch.3 If [α ]≠ ∅ then Ch(α) ≠ ∅ .
Ch.4 Ch(α ∨ β) ∈ {Ch(α), Ch(β), Ch(α ) ∪ Ch(β) }.

The selection function Ch is proposed as the semantic counterpart
of the syntactic revision operator. The choice of the selection function for
each sentence α: Ch(α), are the worlds in which α and its assumptions
are true, i.e. the worlds in which fα is true. 

[ fα ] = Ch(α ).
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The four constraints on Ch are in exact correspondence with the
four on f. In particular, Ch.3 reflects that every consistent proposition
must contain some chosen elements. 

ADFT frame �W,Ch� is the set of all DFT models having W and Ch. Sat-
isfaction of a modal formula at world w in a model M=�W,Ch,[ ]� is given by: 

M |=w α iff w∈ [α] for atomic sentence α .
M |=w ¬ α iff not M |=w α .
M |=w α ∧ β iff M |=w α and M |=w β.
M |=w � α iff [α ]=W.
M |=w fα iff w ∈ Ch(α ).

The derived satisfaction conditions for the connectives ◊ and ⇒ are:

M |=w α ⇒ β iff [α ] ⊆ [β].
M |=w ◊α iff there is some v ∈ W such that v ∈ [α ].

Truth in a model M=�W,Ch,[ ]� is truth at every point: 

M |= α iff M |=w α for every w ∈ W

Truth in a frame �W,Ch� is truth at every model �W,Ch,[ ]� . 

�W,Ch� |= α iff �W,Ch,[ ]� |= α for all valuation functions [ ]. 

A set of formulas Γ forces a formula α in the context of a model
M=�W,Ch,[ ]�, noted as Γ |=M α if and only if every world w ∈ W if M |=w Γ
then M |=w α . 

Alchourrón proves that his semantic and axiomatic presentations
coincide. 

Observation 3. [2] For any, α ∈ LDFT , |=DFT α iff �DFT α.

2.2. AGM

The idea of belief revision is to describe how the belief state of a
rational agent should change when accepting new information. The prob-
lem arises when the new piece of information is inconsistent with the
agent’s beliefs. Some of the beliefs have to be abandoned to maintain con-
sistency, and a rational choice has to be made in order to select which ones. 
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The AGM paradigm characterizes the revision process in some dif-
ferent ways. In the seminal paper [4], a constructive characterization
called partial meet revision was proposed. It consists in choosing the max-
imal subsets of the belief set which do not imply the new belief and select-
ing some of them. The intersection of the selected sets is taken, forming
a subset that is consistent with the new formula. Partial meet revision
is defined as follows: 

Formal preliminaries: In the AGM account the beliefs of a ration-
al agent are represented by a belief set K, which is a set of sentences in
a language L closed under logical consequence Cn, where Cn satisfies: A
⊆ Cn(A), Cn(Cn(A)) ⊆ Cn(A) and Cn(A) ⊆ Cn(B) if A ⊆ B, as well as supr-
aclassicality, deduction and compactness. 

We use � α as an alternative notation for α ∈ Cn(∅), {A} � α for α
∈ Cn({A}), α � β for β ∈ Cn({α}). {K⊥} denotes the inconsistent belief set. K
+ α denotes the expansion of K by α and is defined by K + α = Cn (K ∪ {α}).

One of the major achievements of AGM theory is the characteri-
zation of revision functions in terms of a set of intuitively reasonable pos-
tulates [4]. The six basic AGM postulates for revision are: 

Closure K *α is a belief set. 
Success α ∈ K *α. 
Inclusion K *α ⊆ K + α. 
Vacuity If K �/ ¬α, then K + α ⊆ K * α.
Consistency If �/ ¬α then K * α ≠ K⊥.
Extensionality If � α ↔β, then K* α = K * β.

The supplementary AGM postulates are as follows: 
Superexpansion K * (α ∧ β) ⊆ (K * α) + β .
Subexpansion If K * α �/ ¬β, then (K * α) +β ⊆ K * (α ∧β)}.

An operator * that satisfies closure, success, inclusion, vacuity, con-
sistency and extensionality, is called a partial meet revision. In addition,
if * also satisfies superexpansion and subexpansion then it is called tran-
sitively relational partial meet revision.

The following postulates will be useful in the following sections: 

Disjunctive overlap (K * α) ∩ (K * β) ⊆ K * (α∨β) .
Disjunctive inclusion If K * (α∨β) �/ ¬α, then K * (α∨β) ⊆ K *α .
Disjunctive factoring Either K * (α∨β) = K *α, or K * (α∨β) = K

*α, or K * (α∨β) = (K *α ) ∩ (K *β ).
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Observation 4. [9] Let K be a belief set and * be an operator for
K that satisfies closure, success, inclusion, vacuity, consistency, and exten-
sionality. Then: 

1. * satisfies disjunctive overlap if and only if it satisfies superex-
pansion. 

2. * satisfies disjunctive inclusion if and only if it satisfies subex-
pansion. 

3. * satisfies both disjunctive overlap and disjunctive inclusion, if
and only if it satisfies disjunctive factoring. 

2.2.1. Epistemic Entrenchment

The notion of epistemic entrenchment for theories was introduced by
Gärdenfors [9] to define the properties that an order between sentences of
the language should satisfy. Gärdenfors proposed the following set of axioms: 

If α ≤ β and β ≤ δ, then α ≤ δ. (transitivity)
If α � β , then α ≤ β. (dominance)
α ≤ (α ∧ β) or β ≤ (α ∧ β). (conjunctiveness)
If K �/⊥, then α ∉ K if and only if α ≤ β for all β. (minimality)
If β ≤ α for all β}, then � α}. (maximality)

The connections between orders of epistemic entrenchment and
Revision is stabilized by means of the following equivalences [10,16,20]: 

(C ≤) α ≤ β if and only if: If α ∈ K *¬(α ∧ β) then β ∈ K *¬(α ∧ β). 

(EBR) β ∈ K * α if and only if either (α → ¬β) < (α → β) or α � ⊥. 

Theorem 5. Let ≤ be an entrenchment ordering on a consistent belief
set K that satisfies transitivity, dominance, conjunctiveness, minimality and
maximality. Furthermore, let * be an operation on K defined via condition
(EBR) from ≤. Then * satisfies closure, success, inclusion, vacuity, consis-
tency, extensionality, disjunctive factoring, and (C ≤) also holds. 

Theorem 6. Let * be an operation on a consistent belief set K that
satisfies closure, success, inclusion, vacuity, consistency, extensionality, and
disjunctive factoring. Furthermore, let ≤ be the relation defined from * by
condition (C ≤). Then ≤ satisfies transitivity, dominance, conjunctiveness
and maximality, and (ERB) also holds. 
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2.2.2. Semantic

The semantic for AGM is based on possible worlds models. A propo-
sition (set of possible worlds) can represent either a belief set or an input
sentence. The belief set K can be replaced, as a belief state representa-
tion, by [K] we indicate the set of worlds that contain K. Similarly, each
sentence can be represented by the set [α ] = [Cn({α })].

The Grove’s sphere-system [14] makes use of a system of concen-
tric spheres around [K]. Intuitively, each sphere represents a degree of
closeness or similarity to [K]. Revising by α is to take the closest α -worlds
with respect to [K]. 

Definition 7. [14] $ ⊆ P(Ω) is a system of spheres centred on [K] ⊆
Ω (the set of all possible worlds) for if and only if it satisfies: 

(S1) $ is totally ordering by ⊆; that is, if G, G’ ∈ $, then G ⊆ G’
or G’ ⊆ G.

(S2) [K] is the ⊆−minimun of $.
(S3) Ω is the ⊆−maximun of $.
(S4) If [α] ∩ ∪$ ≠ ∅, then Sα = ∩{G ∈ $: G ∩ [α] ≠ ∅} ∈ $.

Theorem 10. [14] Let K be a belief set and * an operator for K. Then
the following conditions are equivalent: 

a) * satisfies closure, inclusion, vacuity, success, consistency, exten-
sionality, subexpansion, and superexpansion. 

b) There exists a system of spheres centred on [K] such that for all
consistent α, [K * α ] = Sα. ∩ [α]

Figure 1. Revision of K by α
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2.3. Abductive Expansion

In [18] and [17] a new belief change function, abductive expansion,
is presented. Unlike the AGM expansion (consisting in K + α = Cn (K ∪
{α})), the agent incorporates a justification or explanation of the new belief
together with the new information. The justification is the “abduction”
of a formula and it is defined as follows: 

Definition 9. An abduction of a formula α with respect to a domain
theory Γ is a formula β such that:

1. Γ ∪ {β }) � α
2. Γ ∪ {β }) �/ ⊥

Definition 10. K ⊕ α is an abductive expansion of K with respect
to α iff: 

K + β   for some abduction β of a formula α wrt Γ.
K ⊕ α = {K         if no such β exists.

The postulates that characterize abductive expansion are: 
Closure K ⊕ α is a belief set. 
Limited Success If ¬α ∉ K, then α ∈ K ⊕ α.
Inclusion K ⊆ K ⊕ α.
Vacuity If ¬α ∈ K, then K ⊕ α = K.
Consistency If ¬α ∉ K then ¬α ∉ K ⊕ α.
Extensionality If � α ↔β}, then K ⊕ α = K ⊕ β.

For the supplementary level, disjunctive factoring is added: 
Disjunctive factoring
Either K ⊕ (α ∨β) = K ⊕ α, or K ⊕ (α ∨ β) = K ⊕ β, or 

K ⊕ (α ∨ β) =( K ⊕ α) ∩ (K⊕ β).

Figure 2. Abductive expansion of K by α

382 EDUARDO FERMÉ – RICARDO RODRÍGUEZ

ANÁLISIS FILOSÓFICO XXVI Nº 2 (noviembre 2006)



In order to present the semantic, we will also use the Grove’s sys-
tems of spheres. The construction is very similar to AGM belief revision.
The difference arises in AGM revision where [K] is the innermost sphere;
in abducting expansion this condition is not anymore valid, i.e. a system
of spheres can exist inside [K]. 

2.4. From DFT to AGM

In order to conclude this background, a first and well known connec-
tion between AGM and DFT will be given here. In this sense, we have to note
that the DFT models are able to define a belief operator in the following way: 

Observation 11. Given a belief set K, we can take the conditional
theory:

ThK = { > α | α ∈ K } ∪ {¬( > α) | α ∉ K }.

Then to check if β belong to the revised belief set K*α will corre-
spond, in a DFT model, to evaluate the conditional α > β at all worlds sat-
isfying the theory ThK, that is, at all worlds whose corresponding belief
are K. More formally:

Theorem 12. Let K and * be a belief set and a partial meet revi-
sion on K, respectively. Then there exists a DFT model M* such that for
each α, β ∈ L,

β ∈ K * α if and only if ThK =M* α > β 

In this work, we are interested in a more general connection
between AGM and DFT such as it is shown in the next section. 

3. DFT and its Theory Change Associated

3.1. DFT as Belief Revision

In this section we will define three different models to capture the
idea of defeasible conditional DFT. 

3.1.1. Axiomatic

In order to characterize the operator f as a belief revision opera-
tor, we can “translate” (in the sense of intuitions) the axioms for the oper-
ator (see Definition 1): f.1 claims that α is part of K * α , in other words,

⊥⊥
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the success postulate. In the same way f.2 corresponds to extensionali-
ty, f.3 to consistency and f.4 to disjunctive factoring. The postulate clo-
sure expresses that the result of a revision is always a theory, hence it
is implicit in the DFT definition. 

With this translation we can define a first model of belief revision
to capture the DFT ideas: 

Definition 13. Model0: ⊗ satisfies closure, success, consistency,
extensionality and disjunctive factoring. 

We can extend the Model0 in the following way: Alchourrón claims
that the Choice function must be understood as “α and the presuppositions
for α”. But what happens in the case where α is consistent with our cor-
pus of beliefs? In that case, there is no reason to eliminate beliefs in the
revision process. We capture this intuition in this extension of Model0: 

Definition 14. Model1: ⊗ satisfies closure, success, preservation,
consistency, extensionality, disjunctive factoring and 

Preservation If ¬α ∉ K, then K ⊆ K ⊗ α.

Finally, if the sentence α is already in our corpus of belief, we can
assume that all the presuppositions for α are also included in it; conse-
quently, there is no reason to perform any change: 

Definition 15. Model2: ⊗ satisfies closure, success, consistency,
extensionality, disjunctive factoring and 

Vacuity 2 If α ∈ K, then K ⊗ α = K .2

The arisen question is the relation between the model proposed and
AGM belief revision. Model0 uses all the AGM postulates, except inclusion
and vacuity. These postulates are the only postulates in the AGM axiomat-
ic that refer to the corpus of belief K, and consequently, the postulates relat-
ed to the rationality criteria of “minimal change” (for a deep analysis about
the relation between these postulates and minimal change see [21]).

In our Model0, no corpus of belief is specified. In Model1 appears
the first constraint related to the actual beliefs by means of the preserva-
tion postulate. It is easy to prove that the AGM vacuity postulate follows
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from preservation and success. Model1 is related to minimal change since
it constrains the function to conserve all the previous beliefs when they
are consistent with the new belief. On the other hand Model2 establish-
es an upper limit for the revision when the new belief is already believed. 

The AGM inclusion postulate cannot be derived in our models. The
reason is simple. Inclusion establishes a very strong condition in the revi-
sion process: Revise by α cannot add more beliefs than the included in the
consequences of K ∪{α}. This constraint does not permit to include “the
presuppositions of α”. Consequently, we exclude it from our models. 

3.1.2. Constructing DFT-related revision functions

We will construct DFT-related revision functions using epistemic
entrenchment. In standard AGM epistemic entrenchment, minimality
claims that all the sentences that are not in K are all in the bottom of the
ordering. In order to construct DFT-related revision function, the mini-
mality postulate will be discarded. We can construct a DFT-related revi-
sion function Model0 by means of (C ≤) and (EBR): 

Theorem 16. Let ≤ be an entrenchment ordering on a consistent
belief set K that satisfies transitivity, dominance, conjunctiveness and max-
imality. Furthermore, let ⊗ be an operation on K defined via condition
(EBR) from ≤. Then ⊗ satisfies closure, success, consistency, extensional-
ity, disjunctive factoring, and (C ≤) also holds. 

Theorem 17. Let ⊗ be an operation on a consistent belief set that
satisfies closure, success, consistency, extensionality and disjunctive fac-
toring. Furthermore, let ≤ be the relation defined from * by condition (C
≤). Then ≤ satisfies transitivity, dominance, conjunctiveness and maximal-
ity, and (EBR) also holds. 

In order to construct DFT-related revision function Model1 and
Model2 we need a new postulate for the entrenchment ordering: 

If α ∉ K and β ∈ K, then α < β. (primacy)

Primacy, as minimality, establishes that the sentences that are not
in K are less entrenched than the sentences that are in K. However, pri-
macy does not force that all the sentences outside K are equally entrenched. 

Theorem 18. Let ≤ be an entrenchment ordering on a consistent
belief set K that satisfies transitivity, dominance, conjunctiveness and max-
imality. Furthermore, let ⊗ be an operation on K defined via condition
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(EBR) from ≤. Then ⊗ satisfies closure, success, preservation, consisten-
cy, extensionality, disjunctive factoring, and (C ≤) also holds.

Theorem 19. Let ⊗ be an operation on a consistent belief set K that
satisfies closure, success, preservation, consistency, extensionality and dis-
junctive factoring. Furthermore, let ≤ be the relation defined from ⊗ by con-
dition (C ≤). Then ≤ satisfies transitivity, dominance, conjunctiveness,
maximality and primacy, and (EBR) also holds.

In DFT-related revision Model2, the postulate vacuity 2 is incor-
porated. (EBR) is not enough to guarantee that K will be unchanged if
α ∈ K. Consequently we must modify the identity as follows: 

 (either α → ¬β < α → β or α � ⊥) and α ∉ K.
(EBR_2) β ∈ K ⊗ α iff 〈

 β ∈ K and α ∈ K.

Theorem 20. Let ≤ be an entrenchment ordering on a consistent
belief set K that satisfies transitivity, dominance, conjunctiveness and max-
imality. Furthermore, let ⊗ be an operation on K defined via condition
(EBR_2) from ≤. Then ⊗ satisfies closure, success, preservation, vacuity
2, consistency, extensionality, disjunctive factoring, and (C ≤) also holds.

Theorem 21. Let ⊗ be an operation on a consistent belief set K that
satisfies closure, success, vacuity 2, consistency, extensionality and disjunc-
tive factoring. Furthermore, let ≤ be the relation defined from ⊗ by con-
dition (C ≤). Then ≤ satisfies transitivity, dominance, conjunctiveness,
maximality and primacy, and (EBR_2) also holds.

3.2. DFT as Abductive Expansion

Another way to interpret the DFT logic as a change function is as
Abductive Expansion. The key idea is that incorporating “α and the pre-
suppositions for α” is more than simply expanding by α (i.e., K+α = Cn(K
∪ {α})). These presuppositions constitute the abductive part of the change
and will be incorporated. This interpretation matches the axioms for the
operator f, but with an additional constraint: α must be consistent with
our corpus of belief, otherwise, due to the postulate of vacuity, f.1 (suc-
cess) does not hold. Hence, to interpret DFT as abductive expansion we
have two ways: 1. considering this model just for sentences that are con-
sistent with our corpus of belief, or, 2. contract first by the negation of the
new sentence and then make the abductive expansion. 
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Definition 22. Model4: ⊗ satisfies the abductive expansion postu-
lates closure, limited success, inclusion, vacuity, consistency, extensional-
ity and disjunctive factoring. 

Several ways to construct Model4 functions can be found in [18]
and [17]. In particular, for epistemic entrenchment Pagnucco [17, pp 122-
125] defines: 

Definition 23. ≤ is an abductive entrenchment ordering if it sat-
isfies transitivity, dominance, conjunctiveness and 

When K �/ ⊥, α ∈ K if and only if β ≤ α for all β}. (maximality 2)

The connection to the axiomatic is given by the following equivalences:

(C2 ≤) α ≤ β if and only if either α ∉ K ⊗¬(α ∧ β) or K � α ∧ β.

(EBAE) β ∈ K⊗ α if and only if either β ∈ K or both ¬α ∉ K or (α →
¬β) < (α → β).

Theorem 24. Let ≤ be an abductive entrenchment ordering on a
consistent belief set K. Furthermore, let ⊗ be an operation on K defined via
condition (EBAE) from ≤. Then ⊗ satisfies the abductive expansion pos-
tulates closure, limited success, inclusion, vacuity, consistency, extension-
ality and disjunctive factoring, and (C2 ≤) also holds.

Theorem 25. Let ⊗ be an operation on a consistent belief set K that
satisfies the abductive expansion postulates closure, limited success, inclu-
sion, vacuity, consistency, extensionality and disjunctive factoring. Fur-
thermore, let ≤ be the relation defined from ⊗ by condition (C2 ≤). Then
≤ is an abductive entrenchment ordering, and (EBAE) also holds.

4. Conclusions and future works

We have characterized the revision and expansion operations behind
the operator f in DFT logic in terms of postulates, epistemic entrenchment
and sphere systems. Three new kinds of revision function have been pre-
sented. Besides, we have used to explain the Pagnucco’s abductive model
in terms of an operation of change when the input does not contradict what
is already in the original theory, which is called addition by Rott in [19]. 

We believe our interpretation is particularly appealing because it
relates defeasible conditions with a simpler operator satisfying all of AGM
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postulates except inclusion and vacuity, which, according to Rott’s eluci-
dations, lack of these postulates is a sufficient condition to avoid Gärden-
fors impossibility results.3 In this work we have not addressed ourselves
to avoid this problem of change functions of conditional theories. How-
ever, we think this approach is appropriate and it deserves more research.
We leave its investigation for a future paper. 

Appendix. Proofs

Previous Lemmas [9,15]

Lemma 26.
Let ≤ be an entrenchment ordering. Then: 
(a) If �/ α and � β, then α < β. 
(b) If α < β then α ≤ α ∧ β.
(c) α → β < α → ¬β if and only if ¬α < α → ¬β.
(d) If � α ↔α’ and � β ↔β’, then: α ≤ β if and only if α’ ≤ β’. (inter-

substitutivity) 

Proof of Theorem 16
Closure: Let ε∈ L. Then, by compactness of the underlying logic,

there is a finite subset {β1,...,βn} ⊆ L, such that {β1,...,βn}� ε. We must prove
that if {β1,...,βn}⊆ K ⊗ α, then β1∧ ...∧βn ∈ K ⊗ α and ε∈ K ⊗ α. If α � ⊥,
then it follows trivially from (EBR) that β1∧ ...∧βn ∈ K ⊗ α and ε∈ K ⊗
α. Let α �/ ⊥. Then:

1. [Part 1.] We are going to show that β1∧ ...∧βn ∈ K ⊗ α. For this
purpose we are going to prove that if β1 ∈ K ⊗ α and β2 ∈ K ⊗
α then β1∧β2 ∈ K ⊗ α. The rest follows by iteration of the same
procedure. It follows from β1 ∈ K ⊗ α by (EBR) that (α → ¬β1)
< (α → β1). Then by Lemma 26 b and c, ¬α < (α → β1). Then it
follows from β2 ∈ K ⊗ α that ¬α < (α → β2). By conjunctiveness,
either (α → β1) ≤ ((α → β1) ∧ (α → β2)) or (α → β1) ≤ ((α → β1) ∧
(α → β2)). Equivalently by intersubstitutivity either (α → β1) ≤
(α → (β1 ∧ β2)) or (α → β2) ≤ (α → (β1 ∧ β2)). In the first case, we
use transitivity and ¬α < (α → β1) to obtain ¬α < (α → (β1 ∧ β2))
and in the second one we use ¬α < (α → β2) to obtain the same
result. It follows that β1∧β2 ∈ K ⊗ α.
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2. [Part 2.] By repeated use of Part 1, we know that {β1∧ ...∧βn ∈
K ⊗ α. Let � β ↔β1∧...∧βn . We also have � β → ε, then by (EBR)
(α → ¬β) < (α → β). Since � (α → β) → (α → ε) and � (α → ¬ε) →
(α → ¬β), dominance yields (α → β) ≤(α → ε) and (α → ¬ε) ≤ (α
→ ¬β). We can apply transitivity to (α → ¬ε) ≤ (α → ¬β), (α →
¬β) < (α → β) and (α → β) ≤(α → ε) to obtain (α → ¬ε)<(α → ε).
Hence by (EBR), ε∈ K ⊗ α.

Success: If α � ⊥, then it follows trivially from (EBR) that α ∈ K
⊗ α. Let α �/ ⊥. Then by Lemma 26 ¬α < (¬α ∨ α) or equivalently by inter-
substitutivity (α → ¬α) < (α → α). Hence by (EBR), α ∈ K ⊗ α.

Consistency: Let α �/ ⊥. Assume by reduction that ⊥ ∈ K ⊗ α and
α �/ ⊥. Then by (EBR), (α → ¬⊥)<(α → ⊥). Then by intersubstitutivity 
< ¬α . Contradiction by dominance.

Extensionality: Let � α ↔β. If α ∈ K, then β ∈ K and the rest fol-
lows trivially by (EBR). If α � ⊥ then β � ⊥, hence by (EBR), K ⊗ α = K ⊗
β. By intersubstitutivity it follows for all δ that (α → ¬δ) ≤ (β → ¬ δ) and
(α → δ )≤ (β → δ). Hence by transitivity (α → ¬δ) < (α → δ) if and only if
(β → ¬δ) < (β → δ); hence K ⊗ α = K ⊗ α’.

Disjunctive factoring: If α ∈ K, then α ∨ β ∈ K, hence K ⊗ (α ∨
β) = K ⊗ α. If β ∈ K, then α ∨ β ∈ K, hence K ⊗ (α ∨ β) = K ⊗ β. Let α ∉
K and β ∉ K. Then �/ α and �/ β. We have three subcases:

a) ¬α < ¬β. Then �/ ¬α. We will prove that K ⊗ (α ∨ β) = K ⊗ α. For
one direction let δ ∈ K ⊗ α. It follows by (EBR) that (α → ¬δ) <
(α → δ). Then by Lemma 26 b and c, ¬α < (α → δ). It follows by
¬α < ¬β and Lemma 26 that ¬α ≤ (¬α ∧ ¬β). Since dominance
yields ¬β < (β → δ), we use transitivity to obtain both (¬α ∧ ¬β)
< (α → δ) and (¬α ∧ ¬β) < (β → δ). Dominance and conjunctive-
ness yield (¬α ∧ ¬β) < ((α ∨ β) → δ). Hence δ ∈ K ⊗ (α ∨ β). For
the other direction, let δ ∈ K ⊗ (α ∨ β). It follows by ¬α ≤ (¬α ∧
¬β) that �/ (¬α ∧ ¬β); then by (EBR), (¬α ∧ ¬β) < ((α ∨ β) → δ).
By dominance ((α ∨ β) → δ) ≤ (α → δ). Transitivity yields ¬α <
(α → δ), hence δ ∈ K ⊗ α.

b) ¬β < ¬α: Equivalently to case \bf (a); K ⊗ (α ∨ β) = K ⊗ β.
c) ¬α ≤ ¬β. Then ¬α ≤ ¬β ≤ (¬α ∧ ¬β). Then δ ∈ K ⊗ α ∩ K ⊗ β iff

(by (EBR)) ¬α < (α → δ) and ¬β < (α → δ) iff (by transitivity) (¬α
∧ ¬β) < (α → δ) and (¬α ∧ ¬β) < (α → δ) iff (by dominance and
conjunctiveness) (¬α ∧ ¬β) < ((α ∨ β) → δ) iff (by (EBR)) δ ∈ K
⊗ (α ∨ β).

⊥
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(C ≤) For the first direction, let α ≤ β and let α ∈ K ⊗ ¬(α ∧β). If α
∈ K, then by primacy β ∈ K, hence β ∈ K ⊗ ¬(α ∧ β). Let α ∉ K. We have
two subcases according to (EBR): If ¬(α ∧ β) � ⊥, it follows trivially from
(EBR) that β ∈ K ⊗ ¬(α ∧ β). Let ¬(α ∧ β) �/ ⊥, then (¬(α ∧ β) → ¬α) < (¬(α
∧ β) → α), then by intersubstitutivity, (β ∨ ¬α) < α. By dominance, β ≤ (β
∨ ¬α), then it follows by transitivity that β < α. Contradiction.

The other direction can be proved by showing that a) if β <α, then
α ∈ K ⊗ ¬(α ∧ β) and b) if β <α, then β ∉ K ⊗ ¬(α ∧ β).

a) We can do this by showing ¬(α ∧ β) → ¬α <¬(α ∧ β) → α, or
equivalently, β ∨ ¬α <α. Suppose for reduction that this is not
the case. Then α ≤ β ∨ ¬α. Since α ≤ α, conjunctiveness yields α
≤ α ∧ (β ∨ ¬α), hence α ≤α ∧ β, so that by transitivity α ≤β, con-
trary to the conditions.

b) Suppose to the contrary that β <α and β ∈ K ⊗ ¬(α ∧ β). There
are two cases according to (EBR): (b1) � α ∧ β. Then � β, hence
by maximality α ≤β, contrary to the conditions. (b2) ¬(α ∧ β) →
¬β < ¬(α ∧ β) → β, or equivalently by intersubstitutivity to α ∧
β < β, from which it follows by transitivity that α ∧ β < α. We
arrive to a contradiction according to conjunctiveness. This con-
cludes the proof. ■

Proof of Theorem 17
Transitivity: Let α ≤β, β ≤Γ and α ∈ K ⊗ ¬(α ∧γ). We need to prove

Γ ∈ K ⊗¬(α ∧γ).

a) α ∈ K ⊗ ¬(α ∧β)}. Then by (C ≤ ), β ∈ K ⊗ ¬(α ∧β). Then by clo-
sure α ∧ β ∈ K ⊗ ¬(α ∧β)}. It follows by consistency and success
that � α ∧ β, then � β. Closure yields β ∈ K ⊗ ¬(β ∧γ). Then by
(C ≤ ), Γ ∈ K ⊗ ¬(β ∧γ). Then by closure β ∧ Γ ∈ K ⊗ ¬(β ∧γ). It
follows by consistency and success that � β ∧ γ, then � γ. Hence
by closure Γ ∈ K ⊗ ¬(α ∧γ).

b) α ∉K ⊗ ¬(α ∧β). If β ∈ K ⊗ ¬(β ∧γ)}, we have proven in part (a)
that this implies Γ ∈ K ⊗ ¬(α ∧γ). Let β ∉K ⊗ ¬(β ∧γ). We will
prove that this is not a valid case: It follows from closure that �/
β, then ¬(α ∧ β ∧ γ) �/ ⊥, from which it follows by consistency that
K ⊗ ¬(α ∧ β ∧ γ) is consistent. ¬(α ∧ β ∧ γ) is logically equivalent
to ¬(α ∧ γ) ∨ (α ∧ ¬β). It follows by success that α ∈ K ⊗ α ∧¬β.
Then by disjunctive factoring α ∈ K ⊗ ¬(α ∧ β ∧ γ). In the same
way ¬(α ∧ β ∧ γ) is logically equivalent to ¬(α ∧ β) ∨ (β ∧ ¬γ). Then
(due to α ∈ K ⊗ ¬(α ∧ β ∧ γ) and α ∉K ⊗ ¬(α ∧β)) it follows by
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\em disjunctive factoring that K ⊗ ¬(α ∧ β ∧ γ) = K ⊗ (β ∧ ¬γ).
Then β ∈ K ⊗ ¬(α ∧ β ∧ γ) and ¬Γ ∈ K ⊗ ¬(α ∧ β ∧ γ). One more
time, ¬(α ∧ β ∧ γ) is logically equivalent to ¬(β ∧ γ) ∨ (β ∧ ¬α), and
due to β ∉ K ⊗ ¬(β ∧γ), it follows by disjunctive factoring that K
⊗ ¬(α ∧ β ∧ γ) = K ⊗ (β ∧ ¬α). Hence α ∈ K ⊗ ¬(α ∧ β ∧ γ), that
contradict the consistency of K ⊗ ¬(α ∧ β ∧ γ).

Dominance: Let � α → β , and α ∈ K ⊗ ¬(α ∧ β). Then by closure
β ∈ K ⊗ ¬(α ∧ β); hence by (C ≤ ) α ≤ β.

Conjunctiveness: We have three subcases: 
a) α ∉K ⊗ ¬(α ∧ β). Then by extensionality α ∉K ⊗ ¬(α ∧ (α ∧ β)),

hence by (C ≤ ) α ≤ (α ∧ β).
b) β ∉K ⊗ ¬(α ∧ β). In the same way as in a), β ≤ (α ∧ β).
c) α ∈ K ⊗ ¬(α ∧ β) and β ∈ K ⊗ ¬(α ∧ β). Then by closure, (α ∧ β)

∈ K ⊗ ¬(α ∧ β). Hence by (C ≤ ), α ≤ (α ∧ β) and β ≤ (α ∧ β).
Maximality: Let β ≤ α for all β. Then, in particular � ≤ α. Then

by (C≤) if �∈ K ⊗ ¬(α ∧�) then α ∈ K ⊗ ¬(α ∧�). Then by closure α ∈ K
⊗ ¬(α ∧�) that is equivalent by extensionality to α ∈ K ⊗¬α. Hence by
success and consistency � α.

(EBR): From left to right, let β ∈ K ⊗ α and �/ ¬α, then by closure
(α → β) ∈ K ⊗ α and by consistency and success (α → ¬β) ∉K ⊗ α. Then
by extensionality (α → β) ∉K ⊗ ((α→ β)∧(α→ ¬β)) and (α → ¬β) ∈ K ⊗ ((α→
β)∧(α→ ¬β)). Hence by (C ≤ ), (α → ¬β) ≤ (α → β) and (α → β) \not < (α
→ ¬β) and consequently (α → ¬β) < (α → β). For the other direction if α
� ⊥, then by closure and success it follows that β ∈ K ⊗α for all β. Let (α
→ ¬β) < (α → β). Then by (C ≤ ) and extensionality (α → β) ∈ K ⊗ α; hence
by closure and success β ∈ K ⊗α. ■

Proof of Theorem 18
Due to proof of Theorem 16 we just add the proof of preservation. 

Preservation: Let ¬α ∉ K. Let β ∈ K. Then by primacy ¬α < β. By
dominance β ≤ α → β. Then by transitivity ¬α < α → β. Hence by Lemma
26 α → ¬β < α → β from which we can conclude by (EBR) that β ∈ K ⊗α. ■

Proof of Theorem 19
Due to proof of Theorem 17 we just need to prove primacy: 

Primacy: Let α ∉ K and β ∈ K. Then α ∧ β ∉ K. By preservation
K ⊆ K ⊗ ¬(α ∧ β ). Then β ∈ K ⊗ ¬(α ∧ β ), from which it follows from
(C≤ ) that α ≤ β. Due to α ∧ β ∉ K it follows that �/α ∧ β, then by consis-
tency, α ∉ K ⊗ ¬(α ∧ β ). Then by (C≤ ), β ≤/ α. Hence α < β. ■
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Proof of Theorem 20
The previous proofs of closure, success, consistency, extensionali-

ty and disjunctive factoring didn’t use the fact that α ∈ K or α ∉ K. Then
there are enough to proof the part of (EBR_2) in the case that α ∉ K. If
α ∈ K, closure, success, consistency, extensionality, and disjunctive fac-
toring trivially follow. Vacuity 2 trivially follows from (EBR_2). ■

Proof of Theorem 21
We just need to prove (EBR_2):
(EBR_2) If α ∈ K it follows trivially by vacuity 2. If α ∉ K the proof

is equal to (EBR).■
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